7^3x-1=(1/49)^1-x

Simple and best practice solution for 7^3x-1=(1/49)^1-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^3x-1=(1/49)^1-x equation:



7^3x-1=(1/49)^1-x
We move all terms to the left:
7^3x-1-((1/49)^1-x)=0
Domain of the equation: 49)^1-x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7^3x-((+1/49)^1-x)-1=0
We multiply all the terms by the denominator
7^3x*49)^1-x)-((-1*49)^1-x)+1=0
We add all the numbers together, and all the variables
7^3x*49)^1-x)-((-49)^1-x)+1=0
Wy multiply elements
343x^4-49)^1-x)+1=0
We do not support expression: x^4

See similar equations:

| 13x-12=2(3x-7)+7x+2 | | (x+x)x3=20 | | 5(a+2)-15=45 | | 9x-7=9x-11 | | r+-9=6 | | -12a+41=65 | | 11p+19=74 | | 4+2q=20-2Q | | 4x+3x+28=98 | | 3⅒s=6⅕ | | C=0.10x+14.75 | | 0.9(a-20)=830 | | 0.08(x-100)=56.5-0.07x | | 4x^2/4x^2=-24/4 | | 90=3x+(5x+2) | | 2x+6x+9x=180 | | -1/8m-12-3=-12 | | -2+4w2=w | | 4(x-1)-9=-3(-7x+1)-3x | | n=816n= | | 2/3×48=d | | 5x+5/10+7=10 | | 2(l+5)+8=6 | | -2(-6x+4)-2x=2(x-5)-2 | | 2x+(-3x-3=11 | | 4x+10x=8 | | 17-4x=23 | | 23=17-4x | | C(x)=240+6 | | 9x-20+5x-10=180 | | F(3)=3x-5 | | X/6-2=-1/3+x |

Equations solver categories